The goal of the Accelerator Neutrino Neutron Interaction Experiment, or ANNIE, is to provide a measurement of the neutron production rate in water Cherenkov detectors. With a volume of about 30 tons of Gadolinium-doped water, it will measure the neutron yield of neutrino interactions as a function of the neutrino energy in the well-characterized Booster Neutrino Beam at Fermilab. The modularity of ANNIE will allow it to perform the very first live test of a novel kind of photodetectors called LAPPDs (Large Area Picosecond Photodetectors) in a neutrino detector. The technology behind the ANNIE detector will have a noticeable impact on the development of future large water Cherenkov detectors as well as on photodetection techniques for neutrino physics.


The ANNIE collaboration


ANNIE is a joint experiment between universities and national laboratories in the United States of America and the United Kingdom.

Fermi National Laboratory

University of California at Davis

Iowa State University

University of California at Irvine

University of Sheffield

Queen Mary University of London


Argonne National Laboratory*

Brookhaven National Laboratory*

University of California at Berkley*

University of Chicago*

Ohio State University*

 * Groups participating in Phase 2 (physics phase) but not actively in Phase 1 (background phase)


Physics goals

The observation of proton decay, a very rare process predicted by Grand Unification Theories, has been one of the main goals of large water Cherenkov detectors for more than three decades. The next generation of detectors, such as Hyper-Kamiokande, will allow physicists to probe a region where most modern GUT models tend to converge in terms of proton decay lifetime. However, with such large scales, most of these detectors will be subjected to a non-negligible rate of atmospheric neutrino interactions, considered backgrounds for proton decay searches. In order to reduce this background and successfully assess the observation of a proton decay event, one needs to differentiate these two processes using their final states. Indeed, while one or several neutrons are typically found in the final state of atmospheric neutrino interactions, no neutrons are expected following a proton decay. The ability to tag neutrons in WCh detectors would thus be considered a considerable milestone for proton decay searches. Other topics in neutrino physics, such as supernovae detection, could be highly impacted as well.


The experiment

The ANNIE detector is located 100 meters downstream and on-axis of the Booster Neutrino Beam (BNB) target at Fermilab. Formerly occupied by the SciBooNE experiment, the experimental hall possesses the advantages of being subjected to an intense and focused neutrino beam while being already dug and immediately furnished and usable.

The ANNIE detector consists of three sub-detectors, each placed along the beam line and serving a particular purpose in order to select neutrino interactions and reject backgrounds.


The Front Anti Coincidence Counter (FACC, or forward veto)

The FACC consists of two layers of horizontal plastic scintillator paddles stacked vertically in order to completely cover the cross section of the water tank upstream. Its main purpose is to detect muons created by neutrino interactions in the rock upstream of the hall and passing through the water tank, in order to tag subsequent events in the detector as not originating from neutrino interactions on water.


The Muon Range Detector (MRD)

A legacy of the SciBooNE experiment, the MRD consists of twelve iron plates, each sandwiched by two layers of plastic scintillator paddles, alternatively arranged in an horizontal and vertical fashion. Its main purpose is to measure the energy and direction of muons exiting the tank, thus allowing reconstruction of the neutrino energy and momentum transfer.


The tank

The water volume is the core of the ANNIE detector and consists of an upright cylinder (10’ x 13’) filled with 30 tons of pure water loaded with gadolinium sulfate (0.2% by weight). While muons created by neutrino interaction on oxygen nuclei can be reconstructed in terms of energy and angle using the Cherenkov light they generated in water, neutrons can be detected upon their capture on gadolinium, which emits a cascade of several gamma rays with a combined energy of about 8 MeV. The tank is covered with photomultiplier tubes (PMTs) and will be instrumented with LAPPDs (for their first live test in a neutrino experiment) during the physics phase.


Given its close location to the BNB dump and the relative promiscuity of the hall, the ANNIE detector is subjected to beam-induced backgrounds that need to be measured beforehand in order to improve the physics results of the experiment. This is the goal of the first phase of the ANNIE experiment, commonly called Phase 1.



Phase 1 (Background phase)

The neutron background can be separated into two categories:

- Skyshine neutrons: Originated from muonic and hadronic interactions in the beam dump, skyshine neutrons travel through the air and can scatter into the experimental hall.

- Dirt neutrons: Neutrinos interactions occurring in the rock upstream of the hall produce neutrons that reach the ANNIE detector.


For Phase 1, only a smaller subvolume within the tank is neutron-sensitive: the Neutron Capture Volume (NCV). It consists of a transparent cylindrical acrylic vessel (50 cm x 50 cm) filled with about 100 liters of gadolinium-loaded liquid scintillator. The high light yield of the liquid scintillator allows an efficient detection of neutron captures at different positions within the tank filled with ultra-pure water.


To detect the scintillation light generated in the NCV, sixty 8-inch PMTs, loaned to the ANNIE collaboration by the Super Kamiokande experiment, are installed at the bottom of the tank.


Phase 2 (Physics phase)

For Phase 2, the tank will be filled with Gd-loaded ultra-pure water in order to be fully sensitive to neutron captures. To increase the light detection efficiency, additional PMTs will be installed in the tank and, along these ~200 PMTs, several LAPPDs will be covering the walls of the tank.

Used as a veto and muon tagging tool in Phase 1, the MRD will be fully refurnished and regain its splendor from the old SciBooNE days. With 10 layers of plastic scintillator paddles, it will provide efficient and precise muon track reconstruction.


The future of ANNIE




Interesting documentation (articles, talks, etc..)

The ANNIE Letter of Intent:

The history of LAPPDs:

The ANNIE webpage: